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ABSTRACT 

In this paper we use a method of an earlier paper in  order to prove the existence 
of some symmetric systems of minimal  surfaces bounded by curves having 
self-intersections. 

In a previous paper [8] a mathematical existence proof was given for a system 

of three surfaces of least area spanning three rectifiable Jordan arcs which are 

joined at two points, subject to additional symmetry conditions (see Fig. 1). 

The proof was based on the solution of a variational problem for a Dirichlet 

functional in a suitable class of functions, and obtained by (a) solving a Riemann 

Hilbert problem, and (b) a method similar to that used by H. Lewy in [4] for the 

solution of a free boundary problem for a minimal surface. 

Fig. 1. System of three surfaces, 

Systems of minimal surfaces similar to that of [8] occur for many different 

contours, and in many natural situations. Striking examples are given in [3] and 

[9]. In this paper we extend the existence proofs of [8] to two such contours. 
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The first is that of Fig. 2 consisting of two Jordan curves C ~, C 2 which are reflections 

of each other with respect to a plane ~' .A soap-film experiment of the Plateau type 

for such a contour yields a catenoidal-like system of three surfaces, two of them 

C ~ 

i n £ g  
a 

Fig. 2. System of three surfaces. 

simply connected and the third lying in ~ ,  and bounded by a free internal bound- 

ary. (See Fig. 2). In Section 1 we give a corresponding mathematical existence 

proof for a rectifiable curve b in ~ and surfaces $1, $2, $3 spanning bC 1, bC 2 and b, 

respectively, with $1,$2 doubly connected, having least surface area among all 

such systems. The second contour (in Fig. 3) consists of a rectifiable Jordan 

curve C, symmetric with respect to a plane ~ which it intersects at points P and Q, 

together with a curve C' in ~ originating at P and passing " through"  C. For this 

contour, Plateau's experiments yield a surface system having an additional free 

C ~ 

i.f,  / t 
Fig, 3. A surface with a free point. 
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point of intersection of an internal arc and the curve C', as in Fig. 3. In Section 2 

we solve the corresponding mathematical existence problem, proving the existence 

of an internal arc b' joining P to a point P* of C', and surfaces St bounded by b' 

and the arc PP* of C', and S, spanning b' and C, such that a) the area of this 

surface is least among all such surface systems; b) b' is analytic and rectifiable; 

c) the angle of intersection of $1 and the portions of S above and below N is !20 °. 

As in I-8] the proof of the least area property requires certain additional inequality 

assumptions. 

Throughout this discussion we use the notation of [8]. In particular A(S)  

denotes the area of a surface S, and DK(2 ) = ½ ff~z(y:2 + 2~)dudv the Dirichlet 

integral of a vector function 2(u, v) over a domain K of the u, v plane. For any 

point set W, we denote the closure of W by fir. 

1. The Catenoidal System. Let C 1, C 2 be rectifiable Jordan curves in x,  y,  z 

space which are reflections of each other with respect to the plane ~ :  z = 0. 

A surface system spanning these curves is "admissible" if it consists of a rectifiable 

Jordan curve b in N together with doubly connected surfaces S 1 , S  2 spanning 

bC t, bC 2 which are reflections of each other with respect to ~ ,  and a surface Sa 

spanning b. 

The contour cannot be spanned by a system of minimal surfaces unless C ~, C 2 

are sufficiently close. (see [7]) Thus we make the following assumption corre- 

sponding to the sufficient condition of J. Douglas for the Plateau-Douglas problem: 

([1], chap. IV). 

Let d be the area of a minimal surface of least area spanning C ~, and d' the 

greatest lower bound of the sufcace areas of  all admissible systems spanning 

C 1, C 2. Then 

(1) d' < 2d. 

We wish to prove the existence of an admissible surface system of least area; 

this is done by solving a variational problem for a Dirichlet functional (in Theo- 

rem 1) and referring to the results of [8] sec. 7, for the least area property. 

For  0 < r <  1, let K,  denote the open annulus of the u, v plane r z < u z + v z < 1, 

bounded by the unit circle L and the concentric circle L,:u2 + v2=  r Z <  1 of 

radius r. (see Fig. 4). Let R be the convex hull of the projection of C 1 onto N. 

By (1) there exists a rectifiable Jordan curve b in R, and a doubly connected 



ALAN SOLOMON 

i 

Lr 

68 

, V  

r J. 

Israel J. Math., 

Fig. 4. 

minimal surface S 1 spanning bC ~ and represented on Kr for some r depending on 

b by a harmonic and isometric vector ~(u, v) = (x(u, v), y(u, v), z(u, v)). (See [1]). 

Let $2 be the reflection of  S 1 with respect to # (spanning bC 2) and S 3 the plane 

region bounded by b. The surface area of this system is 

3 f (2) X A(S3 = F(£) = 2DK,(£) + x(s)y'(s)ds. 
/ = 1  J L .  

DEFINITION 1. We say that a function ~(u, v) = (x(u, v), y(u, v), z(u, v)) is in the 

class ~" if 

a) ~ maps L monotonically onto C 1 ; 

b) For  some r > 1, ~ is continuous on K, and harmonic on K,; 

c) D~.(~)< ~; 
d) z = 0 on L r. 

We pose the 

MINIMUM PROBLEM 1. Minimize F over °d~'. 

As in [8], see. 3, one can prove the following lemma: 

LEMMA 1. F can be defined for  all ~ = (x ,y , z )  in ,~, and even for  those Yc 
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for which x, y are not defined on L,. Moreover F(Yc) >- re, for  some m independent 

of£. 
Using either of the methods indicated in [8] one can prove the following basic 

theorem: 

THEOREM 1. Min imum Problem 1 has a solution. 

As in [1] we replace a minimizing sequence for F in ~ by a sequence (if"} 

where (a) ic" is continuous on a domain K,.,  harmonic on Kr., analytic on L, and 

(b) ~" converges on L to a monotonic representationof C 1 as n ~ oo. As in [1], 

condition (l) implies that such a sequence is cohesive, or that there is a number 

c5 > O, independent of n, such that each closed curve on the surface defined by 

~, having diameter less than 6 can be continuously contracted to a point of the 

surface; this guarantees the non-degeneration of our surface system, as well as 

the convergence of the domains K, .  to an annulus K~, 0 < r < 1. 

For minimum problem 1 the transversality condition is seen to be 

(3) y" - 2x", 2y" + x" --, 0 on  L , . ,  

where O/Ov, O/Os denote differentiation in the radial direction away from the origin 

and in the clockwise tangential direction on L .... respectively. For a solution 

Y: = (x, y, z) of the minimum problem 

(4) y~ - 2x v = 2yv + x~ = O, 

implying as in [8] that the three component surfaces of the system of least area 

meet along the interior arc at 120 ° angles. 

A solution to the minimum problem now follows directly from the theorem: 

THEOREM 2. Let a(s), c(s) be analytic on L, and 0 < t < 1. Then there exist 

functions A(u, v), C(u, v) on Kt, which agree with a, c on L and obey the following 

conditions" 

1) A, C are continuous on K,, harmonic on Kt, and have finite Dirichlet 

integra Is; 

2) On Lt, A and C are analytic and 

(5) C~ - 2A, = 2C~ + As = 0. 

3) Let a", c" converge uniformly to a,c on L; furthermore, let A", C" coincide 

with a n, c n on L, and satisfy 1), 2). Then A n, C" converge uniformly to functions 

A, C which obey conditions 1), 2). 
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To prove this we represent A, C in terms of a, c as in [8], using methods of 

Plemelj and Muskhelishvili. Let A*, C* be harmonic conjugates of the desired 

functions A, C. Defining X*, Y*, and their harmonic conjugates X, Y by 

(6) 
X = 2 A - C * ,  Y =  - 2 C - A * ,  

X * =  2 A * + C ,  Y * = - 2 C * + A ,  

the conditions A = a, C = c on L and (5) take the form 

(7) 2 X - Y *  = f = 3a, 2 Y + X * = g = - 3 c  on L, 

(7a) X * = Y *  = X, = Y~ = 0 on L~. 

Se t t i ngF= X + iX*, G =  Y + i Y * , H  = ( F ) , g = ( f g ) ,  

and using the methods of  [8] and [5], we obtain 

(8) H(w) = ¼(~b(w) + ~b(1/~) + q~(t4/w) + q~(t'/r~)); 

here ~b(w) is the solution to the Riemann-Hilbert problem 

(9) 2 Re ~b - B Im ~b = ~, on Lt2 

2Req~ + Blmtk = ~, on L, 

with w = u + iv, 

given by 

I 0 - 1 3  
B = ( . 1  0 ' 

1 fL T(w)T+(~)-lg(Z)dz' 
(10) ~(w) = ~-~ +Lt2 t -  w 

where T is a piecewise constant matrix function (see Appendix), and T + denotes 

the limiting value of  T from within the annular domain. The proof of  Theorem 2 

(and the solution of  Minimum Problem 1) now follow directly from (10), as in [8], 

sec. 5. 

An alternate solution of  the variational problem is given as follows: (see [8], 

sec. 6). One broadens .~  to include those functions which are not necessarily 



Vol. 8, 1970 MINIMAL SURFACES 71 

defined on Lt, but whose third component function vanishes there. By the cohesive- 

ness assumption a minimizing sequence for F in ~ and a corresponding family of 

domains Kr, ' is compact, and contains a subsequence which converges to a harmonic 

and isometric function ff = (x, y, z) defined on a domain Kr, with z = 0 on Lr. 

I f  z* is the harmonic conjugate of z on Kr, the function H(u,  v) = z(u, v) + iz*(u, v) 

maps some annular neighborhood of L, onto a strip of finite length in the z, z* 

plane, since z* is not single valued on K,. (See [6], p. 34). The proof  now follows 

in exactly the same manner as [8]. 

Using the methods of [8], sec. 4, one easily sees that the solution of  the minimum 

problem defines on L, an analytic and rectifiable curve which does not intersect 

itself. 

2. A surface with a free paint. Let C 1, C 2 be rectifiable Jordan arcs which 

are reflections of each other with respect to the plane ~ :  z = 0 and which inter- 

sect ~ at their common end points P = (p,0,0),  Q = (q,0,0),  q < p; suppose 

their projections upon ~ lie in the half-plane y < 0. Moreover, assume that 

C 1, C a have tangents at P, Q which do not lie in ~ .  Let C a be a curve given by 

y = f ( x ) ,  with f ( p )  = O, f " ( x )  < O, and f ( p * )  = O, where q < p* < p. (See Fig. 5). 

Consider the class of all surface systems Sa, $2, S a with an internal arc b lying in ~ ,  

joining P, Q and intersecting C a at some point P ' ;  suppose further that S~, $2 

span bC I, bC 2 respectively, and are reflections of  each other with respect to 

while S 3 is in ~ ,  bounded by C 3 and the arc of  b joining P'  and P. We make the 

additional plausible assumption that the arc of b joining P '  to P lies below C a. 

We seek a system of this type having least surface area among all such 

systems. 

This problem is again solved by considering a variational problem for a Dirichlet 

functional in a suitable class of  functions, and applying the methods of [8], sec. 7. 

Let K + be the unit semi-disk u 2 + v 2 < 1, v > 0 of the u, v plane with upper 

arc L + and base B. As in [8], the solution surface is given by a vector function 

~(u, v) = (x(u, v),y(u, v), z(u, v)) on K + such that (see Fig, 6) 

1) ~ maps L + onto C ~ and sat.sties a 3-points condition there; 

2) ff is continuous on L + + K +, harmonic on K +, and Dr+ (2) < c¢; 

3) There exists a point (Uo, 0 ) on B such that ~(u ,v )  tends to a point 

P'  = (p ' , q ' )  of  C a as (u,v) tends to (uo,0); 

4) Among all functions satisfying 1)-3), ff minimizes the functional 
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f(2) = 2Dr.(2) + xy.du + f(x)dx. 

It is seen that the sum of the last two integrals represents the area of the plane 

region $3, while since ff is isometric, F(~) is the area of the system of surfaces 

defined by ft. 

As in [8], F(2) exists for all such functions ~, and has a lower bound independent 

of 2. Let {~"} be a minimizing sequence for F in this function class, uniformly 

convergent on L +. Tben ~" maps some point (u,,0) of B onto a point P,,' of C 3. 

Since the points P', are bounded, we may assure that they converge to a point 

P '  ¢ P as n --, ~ .  (If P'  = P, then the system would degenerate to a minimal 

surface spanning C 1C 2, a possibility which we exclude.) By the methods of [2] 

u, can be seen to converge to a point u'  ¢ + 1, as n ~ ~ .  The convergence of 

{2"} is then proved exactly as in [8], sec. 6. The transversality conditions for the 

solution dictate that along the image curve of [u' ,  1] the component surfaces 

meet at angles of 120 °, while along the image curve of [ - 1 ,  u']  the solution 

surfaces $1, $2 are continuations of each other as minimal surfaces. 

3. Solution of the problem for other contours 

The methods of [8-] can be applied without effort to other contours, subject to 

similar symmetry conditions. Such a contour is that consisting of four Jordan arcs 

joined at two points, which is spanned by a system of five surfaces. (See Fig. 7). 

Because of the similarity of  this problem to that of Section 1, we do not include 

the solution. 

rcs 

Fig. 7. System of five surfaces, 
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Appendix 

As in [8] we seek an analytic vector  funct ion T(w) satisfying the bounda ry  

condi t ions 

D T  + + C T -  = 0 on L,  

(1) 

with 

D T  + + D T -  = 0 on Lt, 

D =  ½J kO j - l ,  j =  k - i  1 ' 

which is o f  the fo rm 

T(w) = ½J j - 1  

T2(w) 

U p o n  subst i tut ion into (1) we obta in  the piecewise cons tant  solutions 

Tl(w) = 1/3, for  I w [ < t  2, 

- -  -1, for t2<lwl<i ,  

= 3, for  [ w [ > l ,  

T2(w) = 1/Tt(w). 

Eq. 10 then follows immediate ly  f rom [5],  p. 236 
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